
Dr. Abdallah Mohamed

Computer Organization

2

A Computer….

http://allthingsd.com

3

Let’s Look Under the Hood

http://allthingsd.com

4

Let’s Look Under the Hood

5

How Computer Was Predicted Back Then!

This is how some in 1954 predicted a 2004 computer

6

Some more predictions (back then!)…

1.5 tons

COSC 122 - Page 7

Key Points

1) The standard computer (von Neumann) architecture consists
of a central processing unit (CPU) and memory that stores both
instructions and data.

2) Understand the Fetch/Execute cycle performed by the CPU.

COSC 122 - Page 8

What Computers Can and Cannot Do

Computers can only deterministically perform or execute
instructions to process information. The computer must have
instructions to follow.

A computer has no imagination, intuition, or emotions. It
has no intelligence, free will, or its own purpose.

We must specify precisely what the computer should do in the
form of instructions and the associated data. We will see how
a computer processes our instructions.

A computer is useful not because it is “smart” but because
it can do simple operations very quickly.

A CPU at 1 GHz can perform about 1 billion operations/second.

COSC 122 - Page 9

Central Processing Unit

A computer contains a
Central Processing Unit
(CPU) with several components:

control unit – responsible for fetching,
decoding, and executing instructions

arithmetic/logic unit (ALU) – responsible for performing
mathematical functions (addition, subtraction, etc.) and logical
operations (AND, OR, NOT)

registers – specialized memory locations used during execution

The CPU is connected to input/output devices and main memory
using the motherboard system bus (set of wires).

This architecture is referred to as a von Neumann architecture
because it uses memory to hold both instructions and data.

The term came from the work of John von Neumann in 1945.

COSC 122 - Page 10

Memory

Memory stores programs and data.

Memory is divided into locations. Each
location has an address (e.g., 32-bits) and
can store 1 byte.

We will show memory with each big cell
consisting of 4 bytes (one word).

Addresses are in decimal and start at 0.

locations

addresses

Questions:

1) What byte value is at address 0?

2) What byte value is at address 17?

3) What word value is at address 16?

4) What word value is at address 28?

A B C D

12345678

0 00000000

Memory

...

0 1 2 3

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 11

Aside: Storing Characters in Memory

Recall that an ASCII character occupies one
byte of space.

In the memory is the string HELLO WORLD
stored at address 0.

Remember that the computer stores things in
binary. To the computer, this looks like: 48 45
4C 4C 4F 20 57 4F 52 4C 44 00.

Note that A = 65 = 41 (hex), B = 66 = 42 (hex), etc.
Also, we terminated the string with NULL (00).

Questions:

1) Store the string "COMPUTER" in memory

starting at address 20. End string with 00.

2) Store your name as a string starting at 16.

R L D

0 H E L L

O W O

Memory

...

0 1 2 3

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 12

Computer Instructions

The CPU has hardwired only a very few basic operations or
instructions that it can perform:

read a memory location into a register

write a register value to a memory location

add, subtract, multiply, divide values stored in registers

shift bits left or right in a register

test if a bit is zero or non-zero and jump to new set of
instructions based on the outcome

sense signals from input/output devices

All programs are composed of these basic operations.

COSC 122 - Page 13

The Fetch/Execute Cycle

The computer performs the following cycle of operations to
process instructions:

Instruction Fetch (IF) - retrieve instruction from memory

Instruction Decode (ID) - lookup meaning of instruction

Data Fetch (DF) - fetch data for instruction

Instruction Execution (IE) - execute instruction

Result Return (RR) - return result to register

A special register called the program counter (PC) stores the
address of the next instruction to execute.

Since each instruction is 4 bytes long, the PC is incremented by
4 every time an instruction is executed unless a branch is
performed.

COSC 122 - Page 14

CPU and Memory Diagram

Bus

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000000

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

CPU

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Memory

A B C D

12345678

0 00000000

...

0 1 2 3

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 15

Decoding Computer Instructions

How the instructions are encoded in bits depends on the
processor and computer architecture. Just like with the ASCII
lookup table, each bit sequence represents some instruction.

We will encode instructions using simple character strings.

Each instruction has one, two, or three parameters or operands.

G [address] [register] – Get data from memory at address and
put in to the register

e.g. G 16 R1 – Get address 16 and put in register 1

P [address] [register]-put data in register to memory at address

e.g. P 20 R2 – Put data in register 2 into memory address 20

+ [reg1] [reg2] [reg3] – Store in reg3 result of reg1+ reg2

 - [reg1] [reg2] [reg3] – Store in reg3 result of reg1- reg2

e.g. + R0 R1 R2 – Store in register 2 result of register 0 + register 1

COSC 122 - Page 16

Example:
Executing Move Instruction

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000000

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Instruction: GET 28, R2

A B C D

12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 17

Example:
Executing Move Instruction - Fetch

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: G 28 R2

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Program counter is for address 0. Fetch from memory.

Increment program counter by 4.

A B C D

12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 18

Example:
Executing Move Instruction - Decode

R0 00000000

R1 00000000

R2 00000000

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: G 28 R2

Param1: 28

Param2: R2

Param3: 00000000

Control Unit

GET 28, R2

Decode instruction. It is a move instruction.

Set param1 to be 28 for memory address and param2 to be register 2.

A B C D

12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 19

Example:
Executing Move Instruction – Execute

R0 00000000

R1 00000000

R2 12345678

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: G 28 R2

Param1: 28

Param2: R2

Param3: 00000000

Control Unit

No data fetch (performed during execute).

Instruction execution: Fetch memory location 28 and put in R2.

No result return.

A B C D

12345678

0 G 28 R2

...

4

8

12

16

20

24

28

32

36

40

44

48

GET 28, R2

COSC 122 - Page 20

Question:
Instruction Execution

R0 00000000

R1 00000000

R2 12345678

R3 00000000

PC 00000004

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Question: Write the instruction GET 36, R1.

Put this instruction in location 4 and explain how it gets executed.

A B C D

12345678

0 G 28 R2

????????

...

4

8

12

16

20

24

28

32

36

40

44

48

00000111

COSC 122 - Page 21

Example:
Add Instruction Execution

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000008

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: 00000000

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Instruction: ADD R1, R2, R3

+ R1R2R3

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 22

Example:
Add Instruction Execution - Fetch

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: + R1R2R3

Param1: 00000000

Param2: 00000000

Param3: 00000000

Control Unit

Program counter is for address 8. Fetch from memory.

Increment program counter by 4.

+ R1R2R3

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 23

Example:
Add Instruction Execution - Decode

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

ADD R1, R2, R3

Decode instruction to determine it is an add. Set param1 to R1 (register 1),

param2 to R2 (register 2), and param3 to R3 (register 3).

Prepare ALU to receive command and inputs.

+ R1R2R3

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 24

Example:
Add Instruction Execution – Data Fetch

No data must be fetched from memory. Nothing to do in this step.

+ R1R2R3

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000000 Input2: 00000000

ALU

Op: 00000000 Output: 00000000

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

ADD R1, R2, R3

COSC 122 - Page 25

Example:
Add Instruction Execution – Execute

R0 00000000

R1 00000111

R2 12345678

R3 00000000

PC 00000012

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

ADD R1, R2, R3

Execute instruction by passing operation and parameters to ALU.

Assume ALU knows operation is an ADD.

ALU executes the add (which may take some time) and result is in output.

+ R1R2R3

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 26

Example:
Add Instruction Execution – Return

R0 00000000

R1 00000111

R2 12345678

R3 12345789

PC 00000012

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

ADD R1, R2, R3

Output result from ALU is returned into register 3 as required.

+ R1R2R3

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 27

Question:
Instruction Execution

Question: Encode the instruction to put the data in register 3 into memory

address 40. Instruction goes in address 12.

Explain how this instruction gets executed.

R0 00000000

R1 00000111

R2 12345678

R3 12345789

PC 00000012

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

+ R1R2R3

????????

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 28

CPU

Question: Which of these is NOT a component of the CPU?

A) control unit

B) arithmetic logic unit

C) bus

D) registers

COSC 122 - Page 29

Fetch/Execute Cycle

Question: Put the steps in order for the Fetch/Execute cycle:

1) Data Fetch (DF)

2) Result Return (RR)

3) Instruction Execution (IE)

4) Instruction Fetch (IF)

5) Instruction Decode (ID)

a) IF,ID,DF,IE,RR

b) ID,IF,DF,RR,IE

c) IF,IE,ID,DF,RR

d) IF,DF,IE,ID,RR

COSC 122 - Page 31

Instruction Execution Result

Question: What is the value of R2 after executing the statement at location 8?

A) 00000000 B) 00000111 C) 12345678 D) 12345789 E) None of the above

R0 00000000

R1 00000111

R2 12345678

R3 12345789

PC 00000008

Registers

Input1: 00000111 Input2: 12345678

ALU

Op: ADD Output: 12345789

Inst: + R1R2R3

Param1: R1

Param2: R2

Param3: R3

Control Unit

+ R0R1R2

P 44 R1

A B C D

12345678

00000111

0 G 28 R2

G 36 R1

...

4

8

12

16

20

24

28

32

36

40

44

48

COSC 122 - Page 32

Challenge Question:
Writing a Simple Program

Write a simple program that computes the following:

result = (A + B) * C

Assume A is at location 52, B is at 56, C is at 60.

Let A=5, B=2, C=10 then the result should be 70.

Store result at location 64.

Your program instructions should begin at address 0.

Be prepared to explain how the program works when executed.

HINT: You will need 6 instructions:

3 GET,

1 ADD,

1 MULTIPLY,

1 PUT. Use the “*” to denote a multiply expression.

52 A

56 B

60 C

64 result

COSC 122 - Page 33

Assembly and Machine Programming

The previous examples are similar to assembly programming.

Machine programming involves specifying commands
directly in binary form.

e.g., 10011010100100101010010

Assembly language is a slightly higher level of commands
which look more like English commands that are then
translated to machine language before execution.

e.g., move, add, sub, etc.

Most programmers do not write code in assembly or machine
language because it is too low-level and time-consuming.

COSC 122 - Page 34

Higher-Level Programming

Higher-level programming languages (such as HTML and
JavaScript) are more powerful and easier to use because they
have more powerful features and functions.

The programmer does not have to specify all the details at a low-
level and can use more general commands.

Note that this is another form of abstraction.

Every language for communicating instructions to the computer
must ultimately be translated to machine language for
execution.

The tools that translate to machine language are called
compilers. Compilers verify that code has correct syntax before
performing the translation.

COSC 122 - Page 35

Branch and Jump Instructions

One type of instruction that is available in all languages is
called a branch or jump instruction.

A branch instruction allows the program to execute different
parts of code depending on certain conditions. Example:

A branch instruction is implemented by making a decision
whether or not to branch (usually a comparison) then setting
the program counter to the address of the next instruction.

IF (you are late) THEN

take the bus to work

ELSE

walk to work

COSC 122 - Page 36

Computer Speed

The speed that a computer can execute a program depends on
many things including:

the speed of the CPU

the speed of the bus, memory, and other devices

the type of program and its characteristics

the amount of parallelism and pipelining in the CPU

Historical example:

Apollo Guidance Computer had 2.048 MHz processor, 32KB of
RAM, 4KB of ROM, and 8 16-bit registers.

COSC 122 - Page 37

Computer Speed in GHz

The most basic measurement is the speed of the CPU clock
because it is a rough estimate of the number of instructions that
can be executed per second.

CPU speed is measured in hertz or cycles per second. The
clock of typical CPUs perform billions (giga-) cycles per
second, so the measurement is in giga-hertz (GHz).

A computer with a 2 GHz CPU has the potential for executing 2
billion instructions per second.

Note that measuring computer performance simply on clock
speed has been used as a marketing tool. As computers
have become faster and more complex, CPU clock speed in
GHz is not the best measurement.

COSC 122 - Page 38

Aside: Advanced Processor Issues

Our explanation of how a processor works is a high-level
abstraction of how they work in practice.

Processors may have multiple dedicated hardware, complex
pipelining features, cache memory, and other optimizations.

Some other terminology:

dual/quad core – means that there are two/four processing
units on the same chip. The units may share subcomponents.

dual processor – means that there are two separate
processing units on different chips. Each processor appears
distinct to the operating system.

32-bit or 64-bit – describes the size of the basic memory unit
and is also related to the bus size.

COSC 122 - Page 39

Operating Systems

An operating system (OS) is software written to perform the
basic operations that are necessary for the effective use of the
computer that are not built into the hardware.

Three most widely used Operating Systems:

Microsoft Windows, Apple's Mac OS X, and Linux/Unix

The OS performs

booting,

memory management,

device management,

file management,

Internet connection, and

provides a platform for the execution and development of
programs.

COSC 122 - Page 40

Computers and Electricity

Computer components consist of gates and circuits that control
the flow of electricity.

A gate is a device that performs a basic operation on
electrical signals.

Common gates: AND, OR, NOT, XOR

A circuit is a combination of gates that performs a more
complicated task.

AND AND

inputs output inputs output

COSC 122 - Page 41

Constructing Gates using Transistors

A transistor may either conduct or block flow of electricity
based on input voltage (functions like a switch).

Made of semiconductor material such as silicon.

An integrated circuit (IC) is contains both transistors and
wires that connect them. manufactured during same process.

Invented by Jack Kilby and others at Texas Instruments in
1958. They received the Nobel Prize in Physics in 2000.

First integrated circuit:

COSC 122 - Page 42

Summary: Putting it All Together

An application is written by a programmer to solve a task using
a programming language.

The application uses features of the operating system to
perform certain functions.

The program is translated (compiled) into machine language for
the computer to use. This form is simply a sequence of bytes.

The byte sequence (binary file) is read from the hard drive into
memory by the operating system when executed.

The commands are executed using the fetch/execute cycle.

The commands are implemented in hardware on silicon on
integrated circuits that are produced using photolithography.

The CPU contains a control unit and arithmetic logic unit that
performs the basic operations. By controlling the flow of
electricity, different states and operations are performed.

COSC 122 - Page 43

Conclusion

The standard computer (von Neumann) architecture consists of
a CPU, memory, a bus, and input/output devices.

The five basic steps of the fetch/execute cycle are:

Instruction Fetch

Instruction Decode

Data Fetch

Instruction Execution

Result Return

Hardware commands are encoded on integrated circuits using
gates that consist of transistors etched on silicon
(semiconductor).

COSC 122 - Page 44

Objectives

Describe the von Neumann architecture (computer anatomy).
Draw the diagram, and list and explain its main components.

Explain the organization of memory in terms of locations and
addresses.

Define and list examples of: input/output device, peripheral

List and explain the three major components of the CPU.

Advanced: Explain the key feature of the von Neumann
architecture.

List some of the basic CPU instructions.

List and explain the five steps of the fetch/execute cycle.

Explain the purpose of the program counter register.

Advanced: Explain how instruction decoding works and be able
to decode an instruction using our format.

COSC 122 - Page 45

Objectives (2)

Be able to explain and demonstrate the fetch/execute cycle for
a small program.

Define: machine language, assembly language

Explain the difference between a high-level programming
language and assembly/machine language.

Define: compiler

Define: branch instruction

List some factors in determining a computer's speed.

Define: gate, circuit, integrated circuit, transistor, semiconductor

